
Warm-up

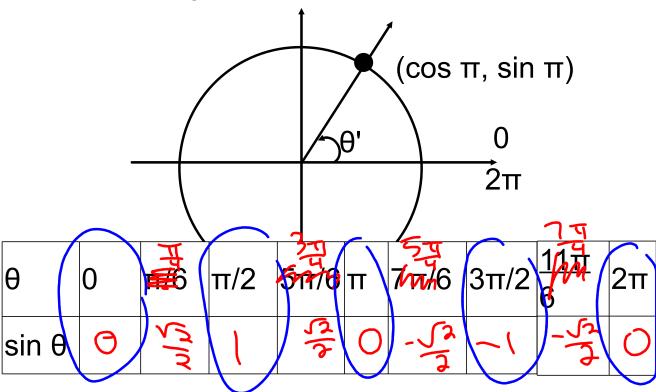
*Chart Quiz-Need to be turned in by

1.) Draw the special right triangles, quadrantals, and trig.

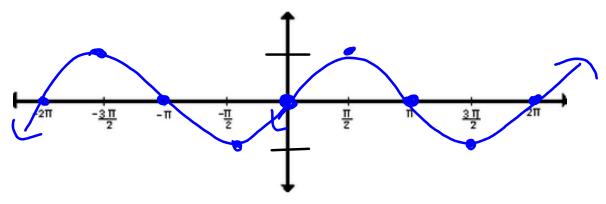
Unit 7 Day	y 9 &10-	graphin	ıg.notebook
------------	----------	---------	-------------

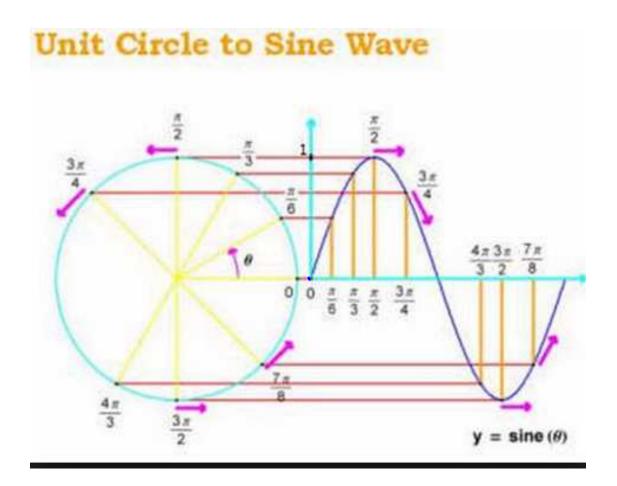
February 05, 2019

http://teachhighschoolmath.blogspot.kr/2011/02/using-pipe-cleaners-for-transformations.html

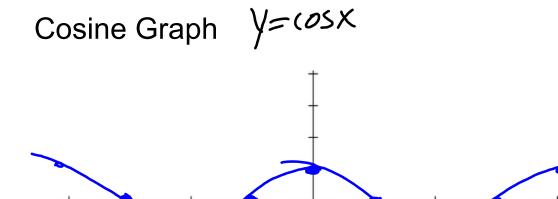

http://themetapicture.com/this-should-be-the-first-thing-shown-in-all-trigonometry-classes/

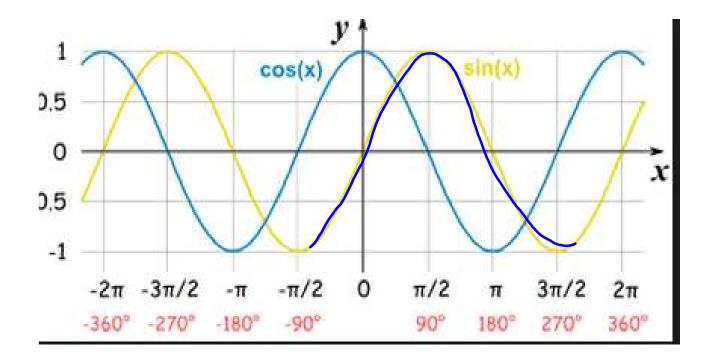
a

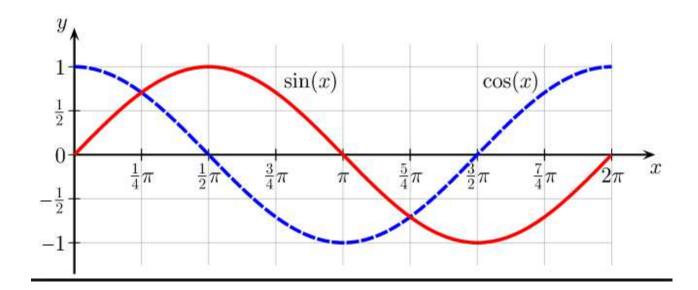

"I can" statements

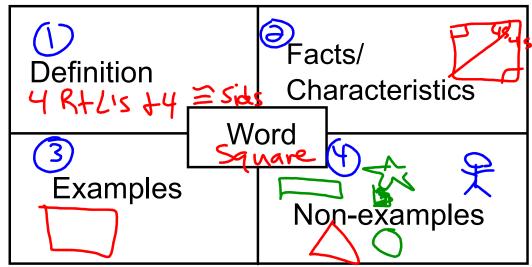

- *I can graph Sine and Cosine functions
- *I can identify the amplitude and period and how it affects graphs.
- *I understand how transformations affect graphs.

14.1-Graphing Cosine & Sine Functions

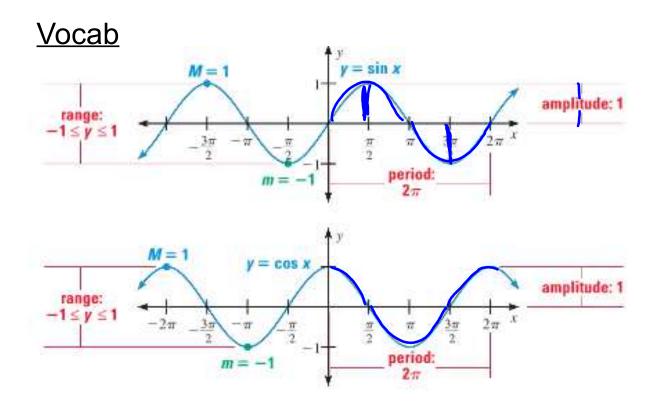








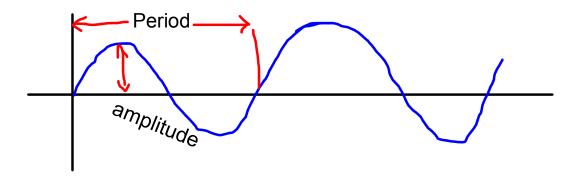
Frayer Model

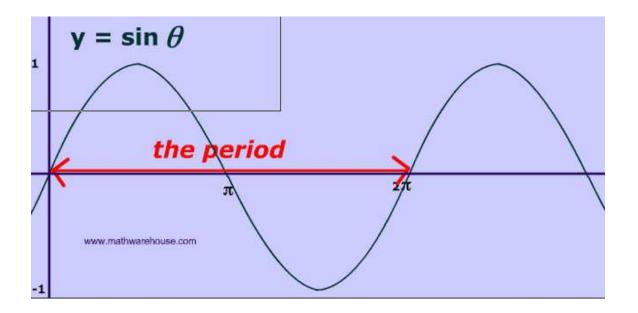


Key Vocab:

amplitude
periodic function
cycle/period
frequency
translation
reflection

Domain/Range

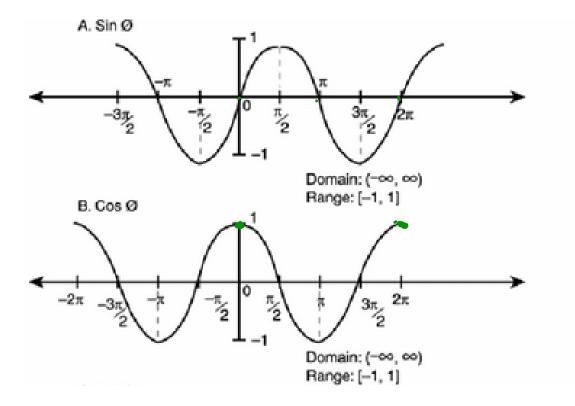

*use a book, chrome book, or your phone to complete the graphic organizer as a table

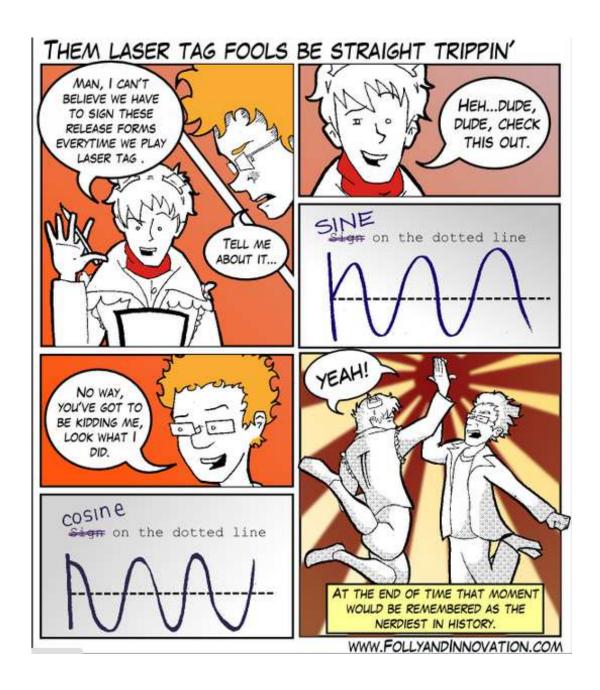


<u>Periodic Functions</u>- repeats over a regular intervals of its domain.

Period-length of the interval of the domain over which the graph repeats itself (one cycle). $(S_{IN} + cos \Rightarrow 2\pi)$

Amplitude - Distance from the center axis to the maximum.




KEY CONCEPT

For Your Notebook

Characteristics of $y = \sin x$ and $y = \cos x$

- The domain of each function is all real numbers.
- The range of each function is -1 ≤ y ≤ 1. Therefore, the minimum value of each function is m = -1 and the maximum value is M = 1.
- The **amplitude** of each function's graph is half the difference of the maximum M and the minimum m, or $\frac{1}{2}(M-m)=\frac{1}{2}[1-(-1)]=1$.
- Each function is periodic, which means that its graph has a repeating pattern. The shortest repeating portion of the graph is called a cycle. The horizontal length of each cycle is called the period. Each graph shown above has a period of 2π.
- The x-intercepts for $y = \sin x$ occur when $x = 0, \pm \pi, \pm 2\pi, \pm 3\pi, \dots$
- The x-intercepts for $y = \cos x$ occur when $x = \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \pm \frac{5\pi}{2}, \pm \frac{7\pi}{2}, \dots$

February 05, 2019

http://illuminations.nctm.org/Activity.aspx?id=3589

38

$$y=\underline{a} \sin(b)x$$

$$amplitude = |a| \qquad po$$

by
$$\gamma = a \cos b \times \frac{1}{a}$$

$$period = \frac{2\pi}{b}$$

Example 1:

A)
$$y = \sin \pi x$$
 $P = \frac{3\pi}{5} = 2$

$$C)y = -2\cos 3x$$

$$Amp = 2$$

$$P = 2\pi$$

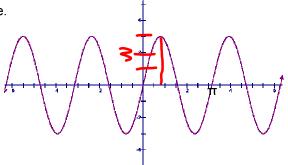
B)
$$y = 3\cos x$$

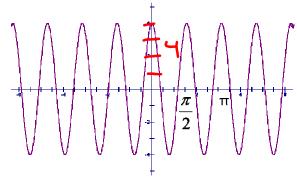
$$R = 2\pi$$

D)
$$y = 4\sin\frac{1}{2}x$$

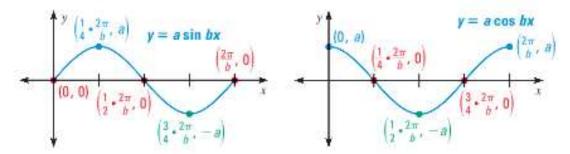
$$A \land P = 4$$

$$P = 2\pi \cdot 2 = 4\pi$$


I. Identify amplitude and period


$$amplitude = |a|$$

$$period = \frac{2\pi}{|b|}$$


Give the amplitude and period.

e.

GRAPHING KEY POINTS Each graph below shows five key x-values on the interval $0 \le x \le \frac{2\pi}{b}$ that you can use to sketch the graphs of $y = a \sin bx$ and $y = a \cos bx$ for a > 0 and b > 0. These are the x-values where the **maximum** and **minimum** values occur and the x-intercepts.

Graph

 $y = \sin \frac{1}{2}x$ $y = \sin \frac{1}{2}(\pi)$ $y = \sin \frac{1}{2}$

- π 3π 4π 3) Find period
 - $\frac{2}{4\pi} = 1\pi$

GUIDED PRACTICE

for Example 1

Graph the function.

1.
$$y = 2 \cos x$$

2.
$$y = 5 \sin x$$

3.
$$f(x) = \sin \pi x$$
 4. $g(x) = c$

4.
$$g(x) = c$$

$$AMP = 5$$

$$Period = \frac{2\pi}{2} = 2\pi$$

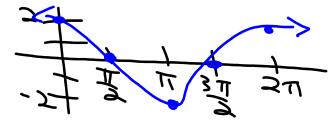
$$4 = \frac{\pi}{2}$$

$$2\pi = \frac{\pi}{2}$$

GUIDED PRACTICE for Example 1

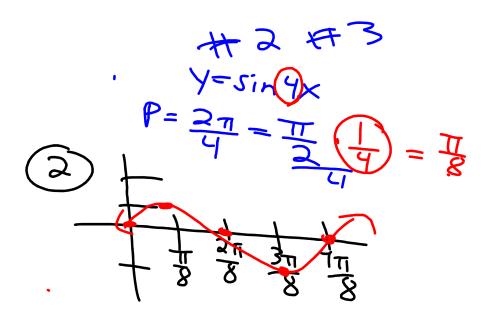
Graph the function.

1.
$$y = 2 \cos x$$


2.
$$y = 5 \sin x$$

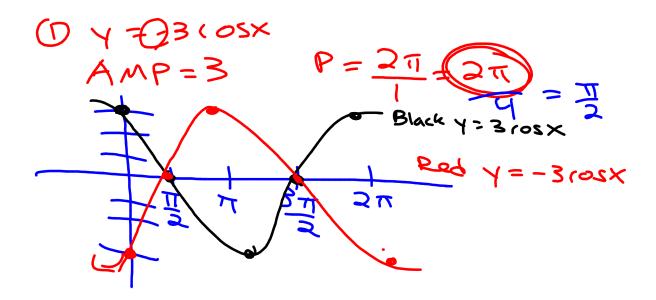
3.
$$f(x) = \sin \pi x$$

$$\mathbf{4.} \ g(x) = \cos 4\pi x$$


2.
$$y = 5 \sin x$$
 3. $f(x) = \sin \pi x$ 4. $g(x) = \cos 4\pi x$

AMP = 2 Revised = $\frac{2\pi}{1}$

$$\frac{A}{S_{\perp}} = \frac{2}{4}$$


*14.1 Recap ws

(3)
$$y = 2 \cos 4x$$

AMP = 2 $P = 2\pi = 2\pi \cdot 4 = 8\pi$

2 π

$$AMP = 1$$

$$P = \frac{2\pi}{2\pi}$$

$$\frac{2\pi}{3}$$

Homework

ws ** Page 912/ 3-5, 7-13 odd, 29, 30

Warm Up

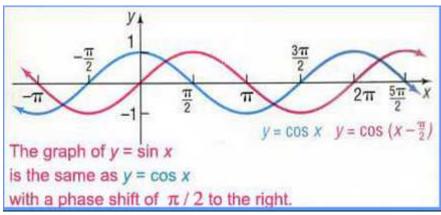
Graph

- 1)Label x and y axis
- 2) Find amplitude
- 3) Find period

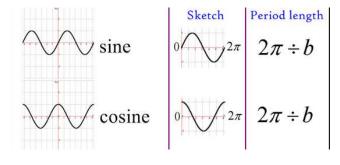
B)
$$y=(1/4) \sin \pi x$$

HW Questions

Day 2 of Graphing


KEY CONCEPT

For Your Notebook


Translations of Sine and Cosine Graphs

To graph $y = a \sin b(x - h) + k$ or $y = a \cos b(x - h) + k$ where a > 0 and b > 0, follow these steps:


- **STEP 1 Identify** the amplitude a, the period $\frac{2\pi}{b}$, the horizontal shift h, and the vertical shift k of the graph.
- **STEP 2 Draw** the horizontal line y = k, called the *midline* of the graph.
- **STEP 3** Find the five key points by translating the key points of $y = a \sin bx$ or $y = a \cos bx$ horizontally h units and vertically k units.
- STEP 4 Draw the graph through the five translated key points.

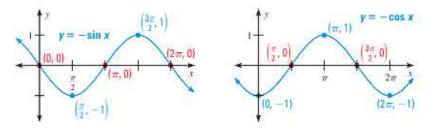
* You are going to need two different colored writing utensils.

Finish Practice WS

Amplitude-

Period-

Vertical Shift-


Horizontal Shift-

Maximum-

Minimum-

x-intercepts-

REFLECTIONS You have graphed functions of the form $y = a \sin b(x - h) + k$ and $y = a \cos b(x - h) + k$ where a > 0. To see what happens when a < 0, consider the graphs of $y = -\sin x$ and $y = -\cos x$.

Notice that the graphs are reflections of the graphs of $y = \sin x$ and $y = \cos x$ in the x-axis. In general, when a < 0 the graphs of $y = a \sin b(x - h) + k$ and $y = a \cos b(x - h) + k$ are reflections of the graphs of $y = |a| \sin b(x - h) + k$ and $y = |a| \cos b(x - h) + k$, respectively, in the midline y = k.

$4) -3 \sin x$

x-intercepts-

AmplitudePeriodVertical ShiftHorizontal ShiftMaximumMinimum-

GUIDED PRACTICE

for Examples 2 and 3

Graph the function.

- 5. $y = \frac{1}{4} \sin \pi x$ 6. $y = \frac{1}{3} \cos \pi x$ 7. $f(x) = 2 \sin 3x$ 8. $g(x) = 3 \cos 4x$ 15 mins at each station
 - 1) Finish worksheet from last class or work on the extra credit worksheet.
 - 2) student.desmos.com

CODE- QP9ZN

Intro to Amplitude and Vertical Shift

https://teacher.desmos.com/activitybuilder/custom/583f4544575b0ce408f7ae68#

3) student.desmos.com

CODE- K282D

Graphing the Sine Function using Amplitude, Period, and Vertical Translation

https://teacher.desmos.com/activitybuilder/custom/56b3e682b884dbd81be6ed09#

Homework

★ Graphing WS
★ Quiz next class over graphing trig functions!